
Surfaces and their Geometry

The geometric perspective on (non-abelian) groups usually stems from how
they act on spaces. It will be convenient to focus on the modular group, and
this example will lead us to discussing both conformal and algebraic geometry.

1 Introduction

The hyperbolic plane H, having both a rich geometry and many connections to
number theory, will be a good choice for the space being acted on, and it will
be convenient to choose the upper half-plane model consisting of the complex
numbers τ with Im τ > 0. The metric imposed on H can be expressed as

ds2 =
dx2 + dy2

y2

meaning that arc lengths are computed with this choice of ds. An interesting
case to consider is the modular group PSL2(Z) with action given by(

a b
c d

)
τ =

aτ + b

cτ + d
Im

(
aτ + b

cτ + d

)
=

(ad− bc) Im τ

|cτ + d|2

Such transformations are called fractional linear.

Definition. A lattice in C is an additive group Λ = ω1 Z+ω2 Z where the periods
ω1 and ω2 are linearly independent over the reals.

Lemma. Two such pairs α, β ∈ C2 generate the same lattice iff(
α1

α2

)
=

(
a b
c d

)(
β1
β2

)
for some matrix in GL2(Z).

Proof. The reverse implication follows from the matrix being invertible, so it
remains to show the forward implication. Assuming they generate the same
lattice, we can express the αi as an integer linear combination of βi and vice
versa. This corresponds to an invertible matrix (over the integers).
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A common theme for groups of geometric interest is that of being finitely
generated, and SL2(Z) is no exception.

S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)
Theorem. The matrices S and T generate SL2(Z).

Proof. Let G be the subgroup generated by S and T .

S

(
a b
c d

)
=

(
−c −d
a b

)
Tn

(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
We will show that for any γ ∈ SL2(Z) there is some g ∈ G so that gγ = ±Tn.
This is sufficient because S2 = −I. Thanks to Euclid’s division algorithm, we
know the lower left entry can zeroed by some g ∈ G.

gγ =

(
±1 −
0 ±1

)
Obviously det = 1 forces such a diagonal, and this is of the desired form.

There is a great wealth of examples found as discrete subgroups Γ of the
much larger group PSL2(R). These groups are discrete in the sense of having
the discrete topology when equipped with the operator norm.

Remark. When a group G acts on a space X, it is usually insightful to consider
the space of orbits X/G equipped with the quotient topology1.

Constructing a torus as a quotient is something covered in every topology
course. However this construction omits the geometry the torus inherits, which
turns out to depend on the lattice used. Because the torus is constructed from
translations of a plane, it is naturally equipped with a flat metric. Surfaces with
many holes pose as more interesting examples.

1.1 Elliptic Functions

A recurring theme throughout mathematics is to study the maps between
objects, rather than the objects themselves. To understand complex tori, we
study the meromorphic functions on them. These are doubly periodic functions
on the complex plane, possibly with some poles.

These so-called elliptic functions have a fundamental domain from which all
other values are determined. This domain is contained in a closed disk, which
is compact. Here and onwards we follow the relevant content of [1] and [2].

1For topological prerequisites see the appendix.
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Proposition. Every holomorphic elliptic function is constant.

Proof. A continuous function on a compact set is bounded, and so, being
bounded and entire, this follows immediately from Liouville’s theorem.

So all interesting examples of elliptic functions have some (finite) number of
poles in the fundamental domain. The properties of meromorphic functions are
usually determined by the poles.

In an attempt to construct such an elliptic function, we consider summing
terms (w−λ)−n for each lattice point λ ∈ Λ. Unless n is taken sufficiently large,
extra terms may need to be inserted to handle convergence. The Weierstrass
elliptic functions are constructed in this way, having a pole at each lattice point

℘(w) =
1

w2
+

∑
λ̸=0

(
1

(w − λ)2
− 1

λ2

)
and are known to convergence absolutely and (locally) uniformly away from
the poles, that is, on compact subsets of the domain. We can check absolute
convergence by examining the tail, which for large λ is of order λ−3. Assuming
uniform convergence, we are allowed to differentiate ℘(w) term by term to get

℘′(w) = −2
∑
λ

1

(w − λ)3

and, as before, any shift merely changes the order of the terms, so this is also
elliptic. The derivative also being elliptic is obvious however, as it follows
immediately from ℘(w) being determined entirely by the fundamental domain.

1.2 Cubic Equations

We see from the definition of the Weierstrass elliptic functions that they are
even functions, and so must have an expansion around w = 0 of the form

℘(w) =
1

w2
+ 0 + aw2 + bw4 + · · ·

where the constant term is the tail evaluated at w = 0. But now consider

℘′′(w)− 6℘(w)2 = −10a+ · · ·
and note that this is holomorphic and elliptic (this should be obvious). So this
is constant, and we have found that the Weierstrass elliptic function satisfies

d

dw
(℘′(w)2 − 4℘(w)3 + 20a℘(w)) = 2℘′(w)(℘′′(w)− 6℘(w)2 + 10a) = 0

or

℘′(w)2 = 4℘(w)3 − g2℘(w)− g3

for suitable coefficients. So we can use elliptic functions to parameterise
solutions to cubic equations of the form

y2 = 4x3 − g2x− g3

known as an elliptic curve when there are no cusps or self-intersections.
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2 Surface Theory

When working with spaces defined by gluing together small patches, it is natural
to ask that the gluing maps, also known as transition functions, are nice. In our
case this will mean holomorphic. The basic idea of a surface is a Hausdorff space
with open sets Uα covering X and homeomorphisms ϕα : Uα → Vα to open sets
of C. We say X is a Riemann surface when ϕβϕ

−1
α is always holomorphic.

Each pair (Uα, ϕα) is called a chart on X, and the collection of all charts
is called an atlas. The compatibility of our atlas allows us to make global
definitions merely in terms of charts. This is important because each chart
corresponds to a choice of local coordinates on the surface. We say, for example,
that a map F : X → Y between Riemann surfaces is holomorphic when ψβFϕ

−1
α

is always holomorphic for suitable charts ϕα and ψβ .

Example (Riemann sphere). The space CP1 has standard coordinates (x : y)
giving affine patches for y ̸= 0 and x ̸= 0. Both patches only exclude one point,
and give charts with affine coordinates x/y and y/x respectively. Away from
zero and infinity, we change coordinates by w 7→ w−1 and this is holomorphic.

Example (complex tori). The quotient group C/Λ is a set of equivalence classes
and is naturally equipped with the quotient topology. A small enough disk in
the plane would contain unique representatives. So we use the inclusions of
these disks into the plane to construct the charts. Any two choices of local
coordinates would be related by w 7→ w + λ which is clearly holomorphic.

2.1 Holomorphic Maps

The implicit and inverse function theorems also hold for complex functions. We
can use these to deduce that every holomorphic map between Riemann surfaces
looks like w 7→ wk near each point.

Lemma. Let f be a holomorphic function on an open neighbourhood U of 0 ∈ C
with f(0) = 0, but with f not identically zero. Then there is a unique integer
k ≥ 1 such that on some smaller neighbourhood V we can find a holomorphic
function g with g′(0) ̸= 0 and f(w) = g(w)k on V .

Proof. Suppose f(w) = akw
k(1+b1w+b2w

2+ · · · ) is the expansion near w = 0,
where ak ̸= 0. If w is sufficiently small, we can write

g(w) = ak
1/kw(1 + b1w + b2w

2 + · · · )1/k

by using the implicit function theorem to make a choice of root. We clearly
have g′(0) = ak

1/k ̸= 0 and so existence is established. Note that k = 1 iff

f ′(0) = kg(0)k−1g′(0) ̸= 0

and otherwise k − 1 is the multiplicity of the zero of f ′ at w = 0. So the
uniqueness of k is clear.
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Theorem. Let X and Y be connected Riemann surfaces and F : X → Y a
non-constant holomorphic map. For each point x ∈ X, there is a unique integer
k = kx ≥ 1 such that we can find charts around x and F (x) in which F is
represented by the map w 7→ wk with w = 0 corresponding to x.

Proof. Initially choose arbitrary charts so that F is represented by f = ψFϕ−1

and the previous lemma gives us f = gk with g′(0) ̸= 0. The inverse function
theorem says g is a homeomorphism in some restricted (co)domain, so we now
change the chart about x by composing with g. The uniqueness of kx is clear.

The points where kx > 1 are known as ramification points and are
particularly important. They are the zeros of f ′(w) for any choice of charts,
and as such are also known as the critical points. A loop winding once around
any point x is mapped to a loop winding kx times around the image point.

Lemma. The zeros of a non-constant holomorphic map form a discrete set.

Proof. Suppose f is holomorphic on some connected open set U , so that in
particular N = f−1({0}) is closed in U , and let c ∈ N . Note that f is not
identically zero, and so there is a least m with f (m)(c) ̸= 0 by analyticity. Now
we can write f(w) = (w − c)mg(w) for some g non-zero near c.

By using charts, we can apply this lemma to show that the ramification
points of F : X → Y form a discrete set. It is common to require that F
is proper, so that the image of this set is also discrete. The image points
are known as branch points, because the map looks locally like the branched
covering w 7→ wk with branch point w = 0.

2.2 Complex Tori

When a holomorphic map has no ramification points, it must preserve the angle
between any two curves and is therefore conformal. To see this, choose suitable
charts so that the map is represented by w 7→ w. Then clearly the angle does
not change (assuming that such a notion of angle is well-defined). It is not hard
to find curves through ramification points for which this fails, so the inverse
function theorem tells us that a map is conformal iff it is locally an isomorphism
onto its image. Obviously bijective conformal maps are exactly isomorphisms.

Example. The automorphisms of the complex plane are the affine maps. [1,
p. 41]

This fact, together with the idea of covering spaces, helps us to classify
complex tori as follows [3]. We work with lattices upto homothety so that sΛ is
considered the same as Λ when s ̸= 0. Note that this is an equivalence relation.

Lemma. Every automorphism of C gives an isomorphism of complex tori.

Proof. Suppose T (w) = aw+b with a ̸= 0. Then w+Λ is mapped to T (w)+aΛ
and we have a map C /Λ → C /aΛ. This has an inverse given by T−1 and is thus
the desired isomorphism. A linear T would be a homothety of the lattices.
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Theorem. Complex tori are isomorphic iff their lattices are equivalent.

Proof. Suppose F : C/Λ1 → C/Λ2 is an isomorphism and note that this gives
a doubly periodic function on the plane. Now lift F to T : C → C which, being
an automorphism, must be affine linear. By a translation, we can assume T is
in fact linear, and therefore T maps Λ1 to Λ2. Otherwise F would not be one-
to-one. But this means T gives a homothety of lattices. In the other direction,
we already have our homothety T and we apply the previous lemma.

The automorphisms that fix a marked point p ∈ C/Λ are then just those
homotheties sΛ = Λ since the translations are now excluded. Every marked
torus is isomorphic to one with lattice Z+τ Z where Im τ > 0 and we wish to
understand when these lattices are equivalent.(

a b
c d

)(
τ
1

)
=

(
aτ + b
cτ + d

)
Any non-trivial homothety of such lattices must involve a rotation, as the

lattice points along the real axis are exactly the integers. Moreover, there must
be a lattice point cτ + d which is mapped to 1 by the homothety. Hence the
scaling constant is s = (cτ + d)−1 and we change basis as above, choosing

Im

(
aτ + b

cτ + d

)
> 0

so that the associated invertible, integer matrix has positive determinant, and
therefore ad− bc = 1. The fundamental domains of these two bases must have
equal area, both being equal to the surface area of the torus. Conversely, the
modular group action on τ produces equivalent lattices, as shown by the change
of basis above.

We have just shown that the points of H/PSL2(Z) are in bijection with the
isomorphism classes of marked tori. For this to be of any importance, we would
also need to show that this correspondence is natural. Naturality may mean
that the geometry of this space reflects the geometry of tori.

2.3 Hyperbolic Surfaces

Since the Riemann sphere is also a projective space, it is natural to discuss the
projective transformations. Being linear transformations of C2 they look like

(x : y) 7→ (ax+ by : cx+ dy) ad− bc ̸= 0

which is an action of PGL2(C) defined by linear fractional transformation, as
discussed in the introduction. These Möbius transformations are exactly the
automorphisms of the Riemann sphere [1, p. 41]. In the standard chart,

w 7→ aw + b

cw + d
∞ 7→ a

c

so that ∞ is fixed exactly when c = 0 and the map is affine linear.
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Lemma. Any Möbius transformation with 3 fixed points must be the identity.

Proof. The fixed points are exactly the solutions to cw2 + (d− a)w− b = 0 and
so there are at most two, unless c = d − a = b = 0 and the transformation is
just the identity.

Theorem. Every Möbius transformation is uniquely determined by three points.

Proof. Suppose f and g be Möbius transformations agreeing at three distinct
points. Then g−1f has three fixed points and must be the identity.

Remark. Now mark four points wi ̸= ∞ and consider the Möbius transformation

w 7→ (w − w1)(w2 − w3)

(w − w3)(w2 − w1)

so that in particular w1 7→ 0, w2 7→ 1 and w3 7→ ∞. Any four distinct points
can be transformed to those three, along with some µ ̸= ∞. By composing
transformations, we see this µ to be invariant under any transformation of the
original four ordered points. This allows us to define the j-invariant.

Every surface to which we have assigned a notion of distance has also a
notion of curvature, and at each point this curvature is either positive, negative
or zero. These also go by the names elliptic, hyperbolic and flat. Since the
Riemann sphere is elliptic, and the complex tori are flat, so we now construct
the upper half-plane H as an example of a hyperbolic Riemann surface.

Any open set in C is clearly a Riemann surface, this includes the unit disk
and the upper half-plane. Both of these are models of the hyperbolic plane, and
are conformally equivalent, that is, isomorphic via the Möbius transformation

τ 7→
(
1 −i
1 i

)
τ

sending the real axis to the unit circle by a rational parametrization. We could
easily check this [1, p. 162] but the result is not important for us.

The motivation for studying the modular group comes from PSL2(R) being
the group of orientation preserving isometries of H [1, p. 163]. As Möbius trans-
formations, we also see this as the group of automorphisms. This shows that
the metric we imposed on H is indeed consistent with the conformal structure
inherited from C. Moreover, this metric is known to be hyperbolic.
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3 Elliptic Curves

Algebraic curves such as the familiar x2+ y2 = 1 have a notion of degree, found
by counting the number of intersection points with any line. To make sure this is
well-defined, i.e. independent of the choice of line, we work over an algebraically
closed field, include so-called points at infinity, and count with multiplicity.

Suppose F is a homogeneous polynomial over the complex numbers, that is,
each term has the same algebraic degree. Then we can talk about the projective
curve F = 0 in CPn consisting of those points where F vanishes. Note that
homogeneity is necessary for this to make sense.

We now homogenise the elliptic curve from the introduction to get

E : y2z = 4x3 − g2xz
2 − g3z

3

whose set of complex projective points is denoted by E(C) ⊂ CP2. By exploiting
properties of the Weierstrass elliptic function for Λ we can write

w 7→ (℘(w) : ℘′(w) : 1)

λ 7→ (0 : 1 : 0)

to define a map C/Λ → E(C). Note that the chosen point at infinity for the
elliptic curve follows from setting z = 0 in the equation above. Assuming this
is an isomorphism of Riemann surfaces, we can carry the group structure of the
complex torus over to the elliptic curve.

The j-invariant is an important tool for understanding elliptic curves and
assigns to each complex torus Σ a complex number ⟨Σ⟩ in such a way that two
tori are isomorphic iff they have the same invariant. We can use the Weierstrass
elliptic functions to compute this invariant.

The Weierstrass elliptic functions are meromorphic functions on marked tori,
and thus give holomorphic maps C/Λ → CP1. A little covering theory [4, p. 61]
shows that there exists no unramified covering of the sphere by a torus, so these
maps must have ramification points. The marked point 0 maps to ∞ and in
suitable charts the function looks like w2(1+O(w4)). Since we only care about
the function near w = 0 we see that k = 2 at the marked point. Explicitly, we
are computing the expansion of 1/℘(w) around the lattice points.

Lemma. Every complex torus is branched cover of the Riemann sphere with
exactly four branch points, and each ramification point with index 2.

We now define the j-invariant as discussed in [1, pp. 91–94]. Consider the
equivalence classes of complex tori with ordered branch points. These are just
quadruples of distinct points on the sphere modulo the Möbius action. But we
can always choose these branch points to be 0, 1, ∞ and some µ ∈ C \{0, 1}
being uniquely determined by the equivalence class. We would like to know
how µ changes as we permute the branch points. By considering the cross-ratio
formula shown in the previous section, we see that the kernal of this S4 action
is isomorphic to the Klein four-group. If we quotient out by this subgroup, we
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get a faithful action of S3. Careful consideration of this action shows that

⟨Σ⟩ = (µ2 − µ+ 1)3

µ2(µ− 1)2

is an invariant quantity. The specifics of this formula2 guarantee that no complex
number is missed, and two cross-ratios µ ∈ C \{0, 1} result in the same value iff
they belong to the same orbit of the S3 action permuting the first three branch
points. Having taken care of the arbitrary choice, the choice of quadruple, we
now have unique complex number for each isomorphism class of torus.

2The factor of 256 usually seen in the literature is omitted.
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A Topological Prerequisites

Suppose we have a collection of objects and morphisms, equipped with a notion
of composition. An isomorphism is any morphism f : X → Y for which there
exists some morphism g : Y → X behaving as an inverse, that is, satisfying

gf = idX and fg = idY

where id denotes the identity. When the objects are topological spaces, and
the morphisms continuous maps, we obtain the definition of a homeomorphism.
Throughout the chapter on surface theory, the objects are Riemann surfaces
and the morphisms are holomorphic maps.

Category theorists tell us to forget the objects and only work with the mor-
phisms. On the other hand, the purpose of topological spaces is that continuity
is defined wholly in terms of the open sets. The latter favours the descriptive
language of near and small.

A.1 Analytic Properties

That any two points can be separated by disjoint open sets, is the most basic
assumption we will make about our spaces, and is known as the Hausdorff
separation axiom. This allows us to construct sufficiently small neighbourhoods
around points of interest, excluding any bad points.

Another property of note is that of compactness, with the intuition being
that the space is finite in extent. Formally, we say that every cover has a finite
subcover, where a cover is any collection of open sets covering the space. As
usual, there is also a weaker, local version saying that every point has a compact
neighbourhood. This definition is complemented by the notion of a proper map,
one where the preimages of compact sets are compact.

In a similar vain, it is common to assume that a space is second-countable,
that is, admits a countable base of open sets.

A.2 Algebraic Constructions

A quotient map q : Y → Y/∼ identifies points of Y by mapping each point to
its equivalence class. The quotient topology is the finest topology for which q
is continuous. Explicitly, we define U ⊆ Y/∼ to be open iff q−1(U) is open.

Following Hatcher [4, p. 56] we say that continuous p : Y → X is a covering
map if every point in X has an open neighbourhood U which is evenly covered
in the sense that p−1(U) is a union of disjoint open sets, called sheets, each of
which is mapped homeomorphically onto U by p. A continuous f : Z → X is
said to lift to some continuous F : Z → Y if we have pF = f .

It is easy to see that every covering map is also a quotient map. Let V be
an open subset of Y . Then p(V ) is also open because V is a union of sheets and
the image of any sheet is open. Hence U ⊆ X is open iff p−1(U) is open, which
we recognise as the quotient topology where fibers p−1(x) are identified.

10



A particularly important example of a covering map is p : S1 → S1 given
by w 7→ wk where we view S1 as the complex unit circle. It is common in
low-dimensional topology to use the looser definition of a branched cover and
this definition allows us to extend p to to C → C with branch point w = 0.
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